Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurology ; 101(11): e1137-e1144, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37463748

RESUMO

BACKGROUND AND OBJECTIVES: Apraxia is commonly attributed to left hemisphere (LH) lesions of the cortical fronto-temporo-parietal praxis networks or white matter lesions causing disconnections between cortical nodes. By contrast, the contribution of lesions to the subcortical gray matter, that is, basal ganglia or thalamus, to apraxic deficits remains controversial. Here, we investigate whether damage to these subcortical gray matter structures (i.e., caudate nucleus, putamen, globus pallidus, and thalamus) or the adjacent white matter tracts was associated with apraxic deficits. METHODS: We identified patients with distinct subcortical lesions with and without apraxia from a large retrospective sample of subacute LH ischemic stroke patients (n = 194). To test which subcortical structures (caudate nucleus, putamen, globus pallidus, thalamus, and adjacent white matter tracts), when lesioned, contributed to apraxic deficits, we statistically compared the proportion of lesioned voxels within subcortical gray and white matter structures between the apraxic and nonapraxic patients. RESULTS: Of the 194 stroke patients screened, 39 (median age = 65 years, range 30-82 years; median time poststroke at the apraxia assessment = 7 days, range 1-44 days) had lesions confined to subcortical regions (gray and white matter). Eleven patients showed apraxic deficits when imitating gestures or pantomiming object use. Region-wise statistical lesion comparison (controlled for lesion size) revealed a more significant proportion of damage ('lesion load') in the caudate nucleus in apraxic stroke patients (mean difference = 6.9%, 95% CI 0.4-13.3, p = 0.038, η p 2 = 0.11). By contrast, apraxic patients had lower lesion load in the globus pallidus (mean difference = 9.9%, 95% CI 0.1-19.8, p = 0.048, η p 2 = 0.10), whereas the lesion load in other subcortical structures (putamen, thalamus, and adjacent white matter tracts) did not differ significantly between the apraxic and nonapraxic patients. DISCUSSION: These findings provide new insights into the subcortical anatomy of apraxia after LH stroke, suggesting a specific contribution of caudate nucleus lesions to apraxic deficits.


Assuntos
Apraxias , Acidente Vascular Cerebral , Substância Branca , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Estudos Retrospectivos , Imageamento por Ressonância Magnética , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/patologia , Apraxias/complicações , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia
2.
J Foot Ankle Res ; 16(1): 21, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061747

RESUMO

BACKGROUND: In infants and young children, a wide heterogeneity of foot shape is typical. Therefore, children, who are additionally influenced by rapid growth and maturation, are a very special cohort for foot measurements and the footwear industry. The importance of foot measurements for footwear fit, design, as well as clinical applications has been sufficiently described. New measurement techniques (3D foot scanning) allow the assessment of the individual foot shape. However, the validity in comparison to conventional methods remains unclear. Therefore, the purpose of this study was to compare 3D foot scanning with two established measurement methods (2D digital scanning/manual foot measurements). METHODS: Two hundred seventy seven children (125 m / 152 f; mean ± SD: 8.0 ± 1.5yrs; 130.2 ± 10.7cm; 28.0 ± 7.3kg) were included into the study. After collection of basic data (sex, age (yrs), body height (cm), body weight (kg)) geometry of the right foot was measured in static condition (stance) with three different measurement systems (fixed order): manual foot measurement, 2D foot scanning (2D desk scanner) and 3D foot scanning (hand-held 3D scanner). Main outcomes were foot length, foot width (projected; anatomical; instep), heel width and anatomical foot ball breadth. Analysis of variances for dependent samples was applied to test for differences between foot measurement methods (Post-hoc analysis: Tukey-Kramer-Test; α=0.05). RESULTS: Significant differences were found for all outcome measures comparing the three methods (p<0.0001). The span of foot length differences ranged from 3 to 6mm with 2D scans showing the smallest and 3D scans the largest deviations. Foot width measurements in comparison of 3D and 2D scans showed consistently higher values for 3D measurements with the differences ranging from 1mm to 3mm. CONCLUSIONS: The findings suggests that when comparing foot data, it is important to consider the differences caused by new measurement methods. Differences of about 0.6cm are relevant when measuring foot length, as this is the difference of a complete shoe size (Parisian point). Hence, correction factors may be required to compare the results of different measurements appropriately. The presented results may have relevance in the field of ergonomics (shoe industry) as well as clinical practice.


Assuntos
, Calcanhar , Humanos , Criança , Pré-Escolar , Pé/diagnóstico por imagem , Pesos e Medidas Corporais , Sapatos
3.
Neuroimage Clin ; 37: 103331, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36716655

RESUMO

BACKGROUND: Previous studies on left hemisphere (LH) stroke patients reported effector-specific (hand, fingers, bucco-facial) differences in imitation performance. Furthermore, imitation performance differed between meaningless (ML) and meaningful (MF) gestures. Recent work suggests that a gesture's meaning impacts the body-part specificity of gesture imitation. METHODS: We tested the hypothesis that the gesture's meaning (ML vs MF) affects the lesion correlates of effector-specific imitation deficits (here: bucco-facial vs arm/hand gestures) using behavioural data and support vector regression-based lesion-symptom mapping (SVR-LSM) in a large sample of 194 sub-acute LH stroke patients. RESULTS: Behavioural data revealed a significant interaction between the effector used for imitation and the meaning of the imitated gesture. SVR-LSM analyses revealed shared lesion correlates for impaired imitation independent of effector or gesture meaning in the left supramarginal (SMG) and superior temporal gyri (STG). Besides, within the territory of the left middle cerebral artery, impaired imitation of bucco-facial gestures was associated with more anterior lesions, while arm/hand imitation deficits were associated with more posterior lesions. MF gestures were specifically associated with lesions in the left inferior frontal gyrus and the left insular region. Notably, an interaction of effector-specificity and gesture meaning was also present at the lesion level: A more pronounced difference in imitation performance between the effectors for ML (versus MF) gestures was associated with left-hemispheric lesions in the STG, SMG, putamen, precentral gyrus and white matter tracts. CONCLUSION: The current behavioural data show that ML gestures are particularly sensitive in assessing effector-specific imitation deficits in LH stroke patients. Moreover, a gesture's meaning modulated the effector-specific lesion correlates of bucco-facial and arm/hand gesture imitation. Hence, it is crucial to consider gesture meaning in apraxia assessments.


Assuntos
Apraxias , Acidente Vascular Cerebral , Humanos , Gestos , Comportamento Imitativo , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Lobo Temporal
4.
Neurol Res Pract ; 2: 7, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324913

RESUMO

INTRODUCTION: Stroke is the leading cause of acquired disability in western societies. (Motor) cognitive deficits like apraxia significantly contribute to disability after stroke, harming activities of daily living and rehabilitation outcome. To date, efficient therapeutic options for apraxia remain sparse. Thus, randomized controlled trials (RCTs) are warranted. METHODS: Based on promising results of a pilot study, the on-going RAdiCS (Rehabilitating stroke-induced Apraxia with direct Current Stimulation) study is a randomized controlled trial, which follows a double-blinded (investigator and patient), two-arm parallel interventional model. It is designed to include 110 apraxic patients (as diagnosed by the Cologne Apraxia Screening, KAS) in the subacute phase after a left hemisphere (LH) stroke. The University of Cologne initiated the trial, which is conducted in two German Neurorehabilitation Centers.The study aims to evaluate the effect of anodal (versus sham) transcranial direct current stimulation (tDCS) applied over the left posterior parietal cortex (PPC) with an intensity of 2 mA for 10 min on five consecutive days on apraxic deficits. In addition to anodal or sham tDCS, all LH stroke patients undergo a motor (cognitive) training that is performed before and after the stimulation (off-line stimulation).The primary outcome measure is the (differential) change in the overall KAS score after five daily sessions of anodal versus sham tDCS when compared to the baseline assessment before tDCS. Secondary study outcomes include further apraxia scores, aphasia severity, and measures of motor performance and disability after stroke. All outcome measures are obtained in the post-stimulation assessment as well as during follow-up (3-4 months after tDCS). PERSPECTIVE: The RCT RAdiCS shall evaluate in a large number of LH stroke patients whether anodal tDCS (compared to sham tDCS) expedites the rehabilitation of apraxia - over and above additional motor (cognitive) training and standard care. A positive study outcome would provide a new strategy for the treatment of apraxia, which hopefully ameliorates the negative impact of apraxia on daily living and long-term outcome. TRIAL REGISTRATION: Clinical Trials Gov: NCT03185234, registered 14 June 2017 ; Deutsches Register für Klinische Studien: DRKS00012292, registered 01 June 2017. TRIAL STATUS: Participant enrollment began on 22 June 2017. The trial is expected to be completed on 30 June 2022.

5.
Cereb Cortex ; 29(3): 1305-1327, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30561508

RESUMO

Human posterior intraparietal sulcus (pIPS) and adjacent posterior wall of parieto-occipital sulcus (POS) are functionally diverse, serving higher motor, visual and cognitive functions. Its microstructural basis, though, is still largely unknown. A similar or even more pronounced architectonical complexity, as described in monkeys, could be assumed. We cytoarchitectonically mapped the pIPS/POS in 10 human postmortem brains using an observer-independent, quantitative parcellation. 3D-probability maps were generated within MNI reference space and used for functional decoding and meta-analytic coactivation modeling based on the BrainMap database to decode the general structural-functional organization of the areas. Seven cytoarchitectonically distinct areas were identified: five within human pIPS, three on its lateral (hIP4-6) and two on its medial wall (hIP7-8); and two (hPO1, hOc6) in POS. Mediocaudal areas (hIP7, hPO1) were predominantly involved in visual processing, whereas laterorostral areas (hIP4-6, 8) were associated with higher cognitive functions, e.g. counting. This shift was mirrored by systematic changes in connectivity, from temporo-occipital to premotor and prefrontal cortex, and in cytoarchitecture, from prominent Layer IIIc pyramidal cells to homogeneous neuronal distribution. This architectonical mosaic within human pIPS/POS represents a structural basis of its functional and connectional heterogeneity. The new 3D-maps of the areas enable dedicated assessments of structure-function relationships.


Assuntos
Cognição/fisiologia , Lobo Occipital/citologia , Lobo Occipital/fisiologia , Lobo Parietal/citologia , Lobo Parietal/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade , Vias Neurais/citologia , Vias Neurais/diagnóstico por imagem , Lobo Occipital/diagnóstico por imagem , Lobo Parietal/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...